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Efficient Evaluation of 
Three-Phase Coexistence Lines 1 

R. Agrawal, 2 M. Mehta, 2 and D. A. Kofke 2'3 

The Gibbs-Duhem integration method is a means for evaluating phase diagrams 
by molecular simulation. Starting from a state of known phase coexistence, one 
applies the Clapeyron equation to trace out subsequent points on the saturation 
line. Each simulation yields a coexistence state, and particle exchanges are not 
invoked to insure equality of fugacities. We describe and demonstrate here the 
extension of this method to three-phase coexistence, namely, among a solid, a 
liquid, and a gas. In one application, we compute the saturation pressure and 
temperature as a function of composition Imore accurately, as a function of 
fugacity fractionJ for six Lennard-Jones two-component mixtures. In a second 
study, we traverse a mutation pathway: that is, we evaluate three-phase equi- 
libria as a/imction ~lthe intermolecuhw potential. In particular, we define a path 
that transforms the Lennard-Jones model into a square well, and thus in our 
calculations we quantify the effect of the shape of the repulsive and attractive 
portions of the potential on the triple point. In the end we have what is, to our 
knowledge, the first estimate of a state of solid-fluid coexistence for a square- 
well model. In both applications we assume that the fcc crystal structure 
represents the thermodynamically stable solid phase. 

KEY WORDS: Lennard-Jones: molecular simulation; phase equilibria: square 
well; triple point. 

1. I N T R O D U C T I O N  

T h e  G i b b s - e n s e m b l e  s i m u l a t i o n  m e t h o d  [ 1 - 3 ]  has  ign i ted  an e x p l o s i o n  of  

in te res t  in the  m o l e c u l a r  s i m u l a t i o n  of  p h a s e  equi l ib r ia  in the  pas t  half-  

decade .  P a n a g i o t o p o u l o s  recent ly  rev iewed  the  s ta te  of  affairs in this  a r ea  

[ 4 ] ,  bu t  a l r e a d y  his r e p o r t  is ou t  of  date .  S igni f icant  a d v a n c e s  have  s ince 
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been made particularly in applying the method to chain molecules [5-8] .  
Despite an impressive pride of achievements, the Gibbs-ensemble method 
is limited by the need to perform particle exchanges which equate chemical 
potentials. This step makes the simulation of molecular systems quite dif- 
ficult, and it so far has precluded application of the method to solid-fluid 
equilibria. 

We recently introduced an alternative to the Gibbs-ensemble approach 
[9, 10]. This method-- termed Gibbs-Duhem integration--relies on ther- 
modynamic integration to evaluate and equate chemical potentials in 
coexisting phases. Beginning from a given coexistence state point, the 
method traces out a line of coexistence by integrating the Clapeyron equa- 
tion. This formula is a first-order differential equation for the saturation 
line, and we have shown that it may be integrated using standard predictor- 
corrector formulas; the wrinkle in our approach is that the "integrand" is 
evaluated by molecular simulation. While the method is incapable of giving 
directly an arbitrary coexistence point, it is particularly well suited for 
evaluating entire phase diagrams. Gibbs-Duhem integration is appealing 
because it is both efficient and robust: Each simulation yields a coexistence 
datum, yet particle insertion is never invoked to ensure chemical potential 
equality. 

In this report we demonstrate that the Gibbs-Duhem integration 
technique can be used to evaluate equilibria with crystalline phases. As an 
added element of interest and novelty, we focus on triple points, states of 
three-phase coexistence. For simple materials, this state-like the critical 
point--is significant because it provides a unique point of reference on the 
phase diagram: also, it is the lowest temperature to which the liquid can be 
cooled without freezing. Perhaps more important is the obvious fact that 
the triple point indeed lies on three coexistence lines, and thus it provides 
a subsequent point of departure for any of three Gibbs-Duhem integration 
series. 

One cannot of course examine a line of triple points without adding 
a degree of freedom to the system--three-phase coexistence of a pure sub- 
stance occurs at a unique temperature and pressure, the triple point. There 
are several ways to construct triple lines. The most obvious is to vary the 
composition. We do this in Section 2, and then in Section 3 we turn to 
what is perhaps a more interesting possibility, a triple line that follows a 
mutation pathway. 

2. MIXTURES 

In a recent work [ ! l ], we described two approaches for extending the 
Gibbs-Duhem integration method to mixtures. Both methods involve 
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integrating along a path in which the composition changes, but they differ 
in the choice of integration variable and, thus, in the independent variables 
selected in the series simulations. In the s e m i g r a m l  method, integration 
proceeds along the fugacity fraction axis, while in the o s m o t i c  method, the 
independent variable is the chemical potential of one of the species. Our 
discussion here employs an extension of the semigrand approach. 

The fugacity fraction of species 2 in a binary mixture is defined as 

& = - -  (1) -- ./" +./~, 

where ./) is the fugacity of component i. With the fugacity fraction as an 
independent variable, the composition is not specified explicitly, and it 
must be determined by an ensemble average. As ~2 varies from zero to 
unity, the mixture becomes progressively rich in species 2. Simulations 
in this semigrand ensemble must include moves in which the molecules 
sample species identities, as well as spatial configurations. The Gibbs 
Duhem equation written in this ensemble takes the form [-11 ] 

d ln(f~ +./',_ ) = h~ d[] + Z d  In p 
-Y2 --  ~2 

d~, (2) 
~z(1 -~ , )  

where h, is the enthalpy above the ideal-gas value, p is the pressure, and 
[~ = 1/k]~ T is the reciprocal temperature, with k~3 Boltzmann's constant; x_~ 
is the mole fraction of species 2, and Z = [3p/p is the compressibility factor, 
with p the number density. In deriving the Clapeyron equations for the 
triple-point line, we consider how [~ and p must vary simultaneously with 
{., to make the left-hand side of Eq. (2) the same when written for three 
coexisting phases. The result is 

In p 1 H~(x g + HIg.\ "~ -'t- HgS.\ "l 

011 1 Z ~ l x  g + Z I g x  ~ + Z g ~ x  I 

(~'~,2 ~2( 1 - - ~ 2 )  ZSlhg-FZlghs-l-ZgShl 

(3) 

where H ~ : ' =  h ~ - I?', Z ~ ; ' =  Z ~ - Z ~', and the superscript refers to the solid 
(s), liquid (1), or gas (g) phase. 

We performed triple-line Gibbs-Duhem series for six Lennard-Jones 
mixtures using the formulas above. The model parameters are summarized 
in Table I. The triple point of the pure Lennard Jones substance was used 
to start each series; the values we adopted for this purpose were [10, 12] 
k T / ~ : = 0 . 6 8 ,  paS / l :=O.O0106 .  Subsequent points along the triple line were 
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determined as follows. The fugacity fraction was advanced by an increment 
of 0.05, and the corresponding mixture triple point was estimated by 
applying a "predictor" formula to each of the relations given in Eq. (3) 
[113. NpT-ensemble simulations were then simultaneously initiated for 
each of the three coexisting phases--each simulated phase is given its own 
simulation volume, and thus is not in direct physical contact with the 
others. Averages were estimated for the enthalpy and the volume of each 
phase, and these quantities were used to evaluate the right-hand sides of 
the relations given in Eq. (3). The results were applied with a "corrector" 
formula to improve the estimate of the triple-point pressure and tempera- 
ture. The simulation continued at the new state conditions, and the process 
of averaging and correcting was iterated to refine further the triple-point 
measurement. At the completion of the run, the fugacity fraction was again 
incremented and the process repeated. This continued until the state of 
pure species 2 was reached, corresponding to a species 2 fugacity fraction 
of unity. As this is once again tile pure Lennard-Jones fluid, the resulting 
estimate for the triple-point pressure and temperature could be verified by 
comparison to the known values. Special measures need to be taken to 
evaluate the right-hand side of tile relations given in Eq. (3) for the respec- 
tive pure components. In these limiting cases, these quantities may be given 
in terms of the Henry's constants of each component  in the other. Details 
have been presented elsewhere [ 11 -], although in the context of two-phase 
coexistence. 

Our simulations were conducted with 108 particles in each phase. We 
sampled 25,000 cycles beyond an equilibration phase that sampled 5000 
cycles. Here a cycle represents either one attempted translation per particle, 
one attempted identity change per particle, or one attempted volume 
change for either of the phases. The usual cubic periodic boundary con- 
ditions with the minimum-image convention were employed [133, and 

Table I. Potential Parameters for the 
Six Mixtures Studied in Section 2" 

Mixture a,_,_/a I I I;12//g" I I I ; 2 2 / ~ :  I I 

I 0.90 1.0 1.0 
0.93 1.0 1.0 

3 0.95 1.0 1.0 
4 1.0 0.95 1.0 
5 1.0 \/0.95 0.95 
6 0.95 0.95 1.0 

" In all cases, a~2= (all + a221/2. 
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the long-range correction to the potential was considered in deciding 
acceptance of volume and identity changes. After every 25 cycles the 
current values of the simulation averages (with the long-range correction 
applied) were used in the corrector formula to update the imposed pressure 
~tnd ternperature. Stochastic errors in the averages were determined by 
examining 25-cycle subaverages, applying the method of Kolafa [143: the 
use of longer subaverage periods had little effect on the error estimate. 
Errors in the triple-point temperature and pressure are more difficult to 
estimate. We provide error estimates for our results based on the stochastic 
simulation errors in the enthalpy, volumes and mole fraction, appropriately 
propagated to T and p with standard propagation-of-error methods [15] 
applied to the corrector formula. This analysis therefore ignores possible 
errors arising from the finite step used to integrate the relations in Eq. (3): 
it also discounts stability considerations, which are concerned with how 
errors in T and p are amplified or attenuated as the series proceeds [ 11 ]. 

-3 
1.4x10 

1.2 ¸ 

1.0 

0.8. E 

0.6 ¸ 

0.4. 

0 . 2 '  

0.0 0.2 0.4 0.6 0.8 t.o 
Fugacity fraction (~2) 

Fig. I. Triple-point pressure of six Lennard-Jones  mixtures, as a function of the 
fugacity fraction of species 2. Mixtures are labeled 1 to 6 in accordance with 
Table 1. Uncertainties propagated from the stochastic errors in the simulation 
averages are indicated where they are larger than the plotting symbols. 
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An fcc symmetry was imposed on the initial configuration of the solid 
phase, and this persisted throughout all simulations; we did not investigate 
the possibility of a polymorphic transition. 

Our results are presented in Figs. 1 and 2. We note first that very good 
agreement is seen with the pure species 2 triple points at the end of each 
series. A most obvious feature of the plots is the prominent influence of the 
size parameter. There is a deep minimum in the temperature (maximum in 
I/T) as a function of composition. This result is consistent with observa- 
tions in fluid-solid (two-phase) equilibria of hard-sphere systems, in which 
a temperature minimum was found for size ratios less than about 0.93 
[16, 17]. The hard-sphere studies further suggest the possibility of a solid- 
phase miscibility gap arising as the size ratio decreases below 0.9. Such a 
circumstance is also possible here, but we did not look for such a 
phenomenon. One should of course not attempt to base conclusions about 

1.70 "'. 

=._. 

~ 1.65. 

~ 1.60" 
E ' 

~1.55  - 
ej  

e¢ 1.50- / ~ J  

0.0 0.2 0.4 0.6 0.8 1.0 
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Fig. 2. Triple-point pressure of six Lcnnard-Jones mixtures, as a function of the 
fugacity fraction of species 2. Mixtures are labeled I to 6 in accordance with 
Table 1. Uncertainties propagated from the stochastic errors in the simulation 
averages are indicated ,,,,'here they are larger than the plotting symbols. 
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the present system on results for hard spheres. Turning briefly to the other 
mixtures, we examined rather small deviations from unity in the energy- 
parameter ratios, and the effect on the triple point is of a corresponding 
I small ) magnitude. 

3. M U T A T I O N  

A mutation path is characterized by a parameter that defines the inter- 
molecular potential. This contrasts with the familiar thermodynamic 
pathways, which are given as in Section 2 in terms of state parameters such 
as the pressure and the temperature. Mutation paths will no doubt prove 
very important in establishing the usefulness of the Gibbs-Duhem integra- 
tion technique. A Gibbs -Duhem survey of the coexistence diagram for a 
given model potential cannot be taken without being first given a point on 
the diagram. Mutation paths present us with a very convenient means for 
obtaining this datum, t, iz., integration from a coexistence point of another, 
better-studied, model potential (e.g., that of Lennard-Jones).  

We wish to demonstrate the notion of a mutation pathway and, at the 
same time, show once more how Gibbs-Duhem integration is extended to 
study three phase coexistence. The path we shall traverse takes the 
Lennard-Jones (LJ) into a square-well (SW) model, and it comprises two 
parts, reflected by a "softness" parameter s and a "well-parameter" k, 

u(r: s, k) = 4~: (1 - k) 4~: +ke( l  - H( r - ) , a - ) )  (4) 

As tile parameter s decreases toward zero from the LJ value of 1/12, the 
repulsive part of the potential becomes increasingly hard. The parameter k 
is zero for the LJ model. Once we reach the limit s = 0, we turn the path 
in a direction of increasing k, reaching the SW potential at k =  1. In 
Eq. (4), H(x) represents the Heaviside step function, and its application 
here contributes a uniform well to the potential from the hard-sphere 
diameter ~ to a range 20; we choose ). henceforth to be 1.5. 

If we treat the potential parameters s and k as independent field 
variables describing the state of a hybrid system, then changes in T, P, s, 
and k must satisfy a generalized Gibbs-Duhem equation 

dln f =h dfl+ Zdln p+ A~ d s +  Ak dk (5) 
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This formula defines A~ and Ak, each of which may in turn be expressed 
in the form of an NpT ensemble average, 

4/]~:((~.) '"  ) 
A, = - In(a/r) 

A'- NpT 

A , . = , h : ( 4 ( ~ . ) ( ' - ( l - H ( , - ) . a ) ) )  
NpT 

161 

Thus they may be readily computed in a molecular simulation. We proceed 
as before to derive Clapeyron formulas that characterize the saturation 
lines along s and k, 

? In p _  H~lAg,+ HIgA~+ Hg~A I, 
?t Z~llt ~ + ZJgl? + Zg~h I 

?t 

Z~'A g, + ZJg/I~ + Zg~AI c 
Z~ll l  ~ + Z W ?  + Z ~ h  I 

(7) 

where t is either s or k, and other quantities are as defined in the previous 
section. 

The only difficulty encountered in the integration series occurs as 
the hard-core limit is approached, i.e., s--*0. In this case, A~ becomes 
increasingly difficult to evaluate by simulation averaging according to 
Eq. (6). Fortunately, we can develop an alternate expression for A~ in this 
limit by expanding the pair distribution function about the contact value 
( r =  a). We may further transform the result by applying the pressure equa- 
tion, which gives the pressure in terms of the radial distribution function 
[18]: finally, we have 

,,1~ = 3 [ Z -  ! + 4l lr<(G/ , )  ~ >][Z' + lnl4/h: 1] (8) 

where ",, is Euler's constant. To evaluate the compressibility factor Z, we 
used the predictor/corrector pressure and temperature and the simulation 
average of the density. 

We performed a Gibbs Duhem integration series along the triple- 
line path connecting the LJ and SW models. The pressure integration 
proceeded almost as prescribed by Eq. (7), the difference being that we 
applied a formulation with the pressure p itself as a dependent variable, 
rather than In(p). Most details of the integration procedure follow as in the 
previous section. Beginning with s =  1/12 and k =0 ,  a step in s was taken 
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to s=0 .08 ,  and subsequently steps of 0.01 were taken to s=0 .01 .  The final 
stcp to s = 0  we completed by evaluating A, according to Eq. 18). The 
resulting point of coexistence was then used to begin an integration series 
in k, applying steps of 0.1 to take k from zero to unity. 

The simulations employed 108 particles in the solid and vapor phases 
and 128 in the liquid. The usual cubic periodic boundaries were applied to 
the solid and vapor, while the liquid was simulated in a periodic truncated 
octahedral cell 1-133. We sampled 10,000 cycles beyond relaxation phases 
of 10,000 or 5000 cycles for the paths in s and k, respectively; a cycle here 
comprises one attempted translation per particle and 10 attempted volume 
changes (among all phases). Subsequent to the calculations reported in 
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Fig. 3. Triplc-pomt temperaturc (dashed lines) and prcssurc Isolid lines) 
observed as the Lennard-Jones potential is mutated into the square well in 
the manner described by Eq. 14) (with .;. = 1.5). The open circles are the s 
pathway (along which k is held fixed at zero), and the filled circles describe 
the k pathway (along which s is held fixed at zerol. The procedure begins at 
the right and traces that path indicated by the arrows. Uncertainties 
propagated from the stochastic errors in the simulation avcrages are 
indicated where they are largcr than the plotting symbols. 
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Section 2, we appl ied  the G i b b s - D u h e m  integra t ion  method  to compute  
the LJ triple point :  [19 ]  kT/e,  = 0.698, pa3/r, = 0.00135: this result was used 
to ini t iate the present  G i b b s - D u h e m  muta t ion  series. 

The sa tura t ion  t empera tu res  and pressures so compu ted  are presented 
in Fig. 3. It is interest ing to see that  the effect of changing the a t t rac t ive  
well is counter  to that of increasing the hardness  of the repulsion.  The 
pressure curve, in par t icular ,  a lmost  retraces itself as s and k are varied in 
turn. Much of  this effect may  be explained by the fact that  the well depth  
increases significantly as s ~ 0 and is res tored upon the increase in k. While  
the t r ip le-point  t empera tu re  also retraces itself to some extent,  it has 
nevertheless been cut a lmost  in half by the process,  set t l ing to a value of 
abou t  0.41 for this ( 2 =  1.5) square-well  model.  The t r ip le-poin t  pressure 
varies over  a ra ther  wide scale dur ing  this process,  and we feel that  more  
accurate  results may have been ob ta ined  by app ly ing  Eq. (7) as wri t ten 
[i.e., in terms of  l n ( p ) ] ;  this ca lcula t ion is current ly  under  way. Also, the 
final step taken to s = 0 seems slightly out  of line with the trend to s = 0.01, 
and we are more  carefully examining  our  app l ica t ion  of  Eq. (8) to see if it 
has in t roduced add i t iona l  uncer ta in ty  at this point.  Pending  comple t ion  of 
these verifications we will wi thold a final p roc l ama t ion  of our  measurement  
of the ). = 1.5 square-well  tr iple point.  
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