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Efficient Evaluation of
Three-Phase Coexistence Lines!

R. Agrawal,> M. Mehta,? and D. A. Kofke>?

The Gibbs-Duhem integration method is a means for evaluating phase diagrams
by molecular simulation. Starting from a state of known phase coexistence, one
applies the Clapeyron equation to trace out subsequent points on the saturation
line. Each simulation yields a coexistence state, and particle exchanges are not
invoked to insure equality of fugacities. We describe and demonstrate here the
extension of this method to three-phase coexistence, namely, among a solid, a
liquid, and a gas. In one application, we compute the saturation pressure and
temperature as a function of composition (more accurately, as a function of
fugacity fraction) for six Lennard-Jones two-component mixtures. In a second
study, we traverse a mutation pathway; that is, we evaluate three-phase equi-
libria as a function of the intermolecular potential. In particular, we define a path
that transforms the Lennard-Jones model into a square well, and thus in our
calculations we quantily the effect of the shape of the repulsive and attractive
portions of the potential on the triple point. In the end we have what is, to our
knowledge. the first estimate of a state of solid-fluid coexistence for a square-
well model. In both applications we assume that the fcc crystal structure
represents the thermodynamically stable solid phase.

KEY WORDS: Lennard-Jones; molecular simulation; phase equilibria; square
well; triple point.

1. INTRODUCTION

The Gibbs-ensemble simulation method [1-3] has ignited an explosion of
interest in the molecular simulation of phase equilibria in the past half-
decade. Panagiotopoulos recently reviewed the state of affairs in this area
[4], but already his report is out of date. Significant advances have since

! Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19-24,
1994, Boulder, Colorado, U.S.A.

* Department of Chemical Engineering. State University of New York at Buffalo, Buffalo,
New York 14260-4200, U.S.A.

*To whom correspondence should be addressed.

1073

0195-928X, 94.1100-1073507.00,0 ¢ 1994 Plenum Publishing Corporation



1074 Agrawal, Mehta, and Kofke

been made particularly in applying the method to chain molecules [5-8].
Despite an impressive pride of achievements, the Gibbs-ensemble method
is limited by the need to perform particle exchanges which equate chemical
potentials. This step makes the simulation of molecular systems quite dif-
ficult, and it so far has precluded application of the method to solid-fluid
equilibria.

We recently introduced an alternative to the Gibbs-ensemble approach
[9.10]. This method—termed Gibbs-Duhem integration—relies on ther-
modynamic integration to evaluate and equate chemical potentials in
coexisting phases. Beginning from a given coexistence state point, the
method traces out a line of coexistence by integrating the Clapeyron equa-
tion. This formula is a first-order differential equation for the saturation
line, and we have shown that it may be integrated using standard predictor-
corrector formulas; the wrinkle in our approach is that the “integrand” is
evaluated by molecular simulation. While the method is incapable of giving
directly an arbitrary coexistence point, it is particularly well suited for
evaluating entire phase diagrams. Gibbs-Duhem integration is appealing
because it is both efficient and robust: Each simulation yields a coexistence
datum, yet particle insertion is never invoked to ensure chemical potential
equality.

In this report we demonstrate that the Gibbs—Duhem integration
technique can be used to evaluate equilibria with crystalline phases. As an
added element of interest and novelty. we focus on triple points, states of
three-phase coexistence. For simple materials, this state-like the critical
point—is significant because it provides a unique point of reference on the
phase diagram; also, it is the lowest temperature to which the liquid can be
cooled without freezing. Perhaps more important is the obvious fact that
the triple point indeed lies on three coexistence lines, and thus it provides
a subsequent point of departure for any of three Gibbs-Duhem integration
series.

One cannot of course examine a line of triple points without adding
a degree of freedom to the system—three-phase coexistence of a pure sub-
stance occurs at a unique temperature and pressure, the triple point. There
are several ways to construct triple lines. The most obvious is to vary the
composition. We do this in Section 2, and then in Section 3 we turn to
what is perhaps a more interesting possibility, a triple line that follows a
mutation pathway.

2. MIXTURES

In a recent work [11], we described two approaches for extending the
Gibbs-Duhem integration method to mixtures. Both methods involve
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integrating along a path in which the composition changes, but they differ
in the choice of integration variable and, thus, in the independent variables
sclected in the series simulations. In the semigrand method, integration
proceeds along the fugacity fraction axis, while in the osmotic method, the
independent variable is the chemical potential of one of the species. Our
discussion here employs an extension of the semigrand approach.

The fugacity fraction of species 2 in a binary mixture is defined as
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where f; is the fugacity of component /. With the fugacity fraction as an
independent variable, the composition is not specified explicitly, and it
must be determined by an ensemble average. As &, varies from zero to
unity, the mixture becomes progressively rich in species 2. Simulations
in this semigrand ensemble must include moves in which the molecules
sample species identities, as well as spatial configurations. The Gibbs—
Duhem equation written in this ensemble takes the form [11]
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where /i, is the enthalpy above the ideal-gas value, p is the pressure, and
{1 =1/k; T is the reciprocal temperature, with k&, Boltzmann's constant; x,
is the mole fraction of species 2, and Z = fip/p is the compressibility factor,
with p the number density. In deriving the Clapeyron equations for the
triple-point line, we consider how f and p must vary simultaneously with
2, to make the left-hand side of Eq. (2) the same when written for three
coexisting phases. The result is
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where H* =" — h", Z*=Z*— Z", and the superscript refers to the solid
{s). liquid (1), or gas (g) phase.

We performed triple-line Gibbs—Duhem series for six Lennard-Jones
mixtures using the formulas above. The model parameters are summarized
in Table 1. The triple point of the pure Lennard-Jones substance was used
to start each series; the values we adopted for this purpose were [10, 12]
kT/e=0.68, po*/e =0.00106. Subsequent points along the triple line were
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determined as follows. The fugacity fraction was advanced by an increment
of 0.05. and the corresponding mixture triple point was estimated by
applying a “predictor” formula to each of the relations given in Eq. (3)
[11]. NpT-ensemble simulations were then simultaneously initiated for
each of the three coexisting phases-—cach simulated phase is given its own
simulation volume, and thus is not in direct physical contact with the
others. Averages were estimated for the enthalpy and the volume of each
phase. and these quantities were used to evaluate the right-hand sides of
the relations given in Eq. (3). The results were applied with a “corrector”
formula to improve the estimate of the triple-point pressure and tempera-
ture. The simulation continued at the new state conditions, and the process
of averaging and correcting was iterated to refine further the triple-point
measurement. At the completion of the run, the fugacity fraction was again
incremented and the process repeated. This continued until the state of
pure species 2 was reached. corresponding to a species 2 fugacity fraction
of unity. As this is once again the pure Lennard-Jones fluid, the resulting
estimate for the triple-point pressure and temperature could be verified by
comparison to the known values. Special measures need to be taken to
evaluate the right-hand side of the relations given in Eq. (3) for the respec-
tive pure components. In these limiting cases, these quantities may be given
in terms of the Henry’s constants of each component in the other. Details
have been presented elsewhere [11], although in the context of two-phase
coexistence.

Our simulations were conducted with 108 particles in each phase. We
sampled 25,000 cycles beyond an equilibration phase that sampled 5000
cycles. Here a cycle represents either one attempted translation per particle,
one attempted identity change per particle, or one attempted volume
change for either of the phases. The usual cubic periodic boundary con-
ditions with the minimum-image convention were employed [13], and

Table I. Potential Parameters (or the
Six Mixtures Studied in Section 2

Mixture d22/0\, £12/€)y Ea/E),
1 0.90 1.0 1.0
2 0.93 1.0 1.0
3 0.95 1.0 1.0
4 1.0 0.95 1.0
5 1.0 /095 0.95
6 0.95 0.95 1.0

“In all cases. 2= (0, +a2)/2
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the long-range correction to the potential was considered in deciding
acceptance of volume and identity changes. After every 25 cycles the
current values of the simulation averages (with the long-range correction
applicd) were used in the corrector formula to update the imposed pressure
and temperature. Stochastic errors in the averages were determined by
examining 25-cycle subaverages, applying the method of Kolafa [14]: the
use of longer subaverage periods had little effect on the error estimate.
Errors in the triple-point temperature and pressure are more difficult to
estimate. We provide error estimates for our results based on the stochastic
simulation errors in the enthalpy, volumes and mole fraction, appropriately
propagated to T and p with standard propagation-of-error methods [15]
applied to the corrector formula. This analysis therefore ignores possible
crrors arising from the finite step used to integrate the relations in Eq. (3):
it also discounts stability considerations, which are concerned with how
crrors in T and p are amplified or attenuated as the series proceeds [11].
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Fig. 1. Triple-point pressure of six Lennard-Jones mixtures, as a function of the
fugacity fraction of species 2. Mixtures are labeled 1 to 6 in accordance with
Table . Uncertainties propagated from the stochastic crrors in the simulation
averages are indicated where they are larger than the plotting symbols.
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An fcc symmetry was imposed on the initial configuration of the solid
phase. and this persisted throughout all simulations; we did not investigate
the possibility of a polymorphic transition.

Our results are presented in Figs. 1 and 2. We note first that very good
agreement is seen with the pure species 2 triple points at the end of each
series. A most obvious feature of the plots is the prominent influence of the
size parameter. There is a deep minimum in the temperature (maximum in
1/T) as a function of composition. This result is consistent with observa-
tions in fluid-solid {two-phase) equilibria of hard-sphere systems, in which
a temperature minimum was found for size ratios less than about 0.93
(16, 17]. The hard-sphere studies further suggest the possibility of a solid-
phase miscibility gap arising as the size ratio decreases below 0.9. Such a
circumstance is also possible here. but we did not look for such a
phenomenon. One should of course not attempt to base conclusions about
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Fig. 2. Triple-point pressure of six Lennard-Jones mixtures, as a function of the
fugacity fraction of species 2. Mixtures are labeled 1 to 6 in accordance with
Table 1. Uncertainties propagated from the stochastic errors in the simulation
averages are indicated where they are larger than the plotting symbols.
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the present system on results for hard spheres. Turning briefly to the other
mixtures, we examined rather small deviations from unity in the energy-
parameter ratios, and the effect on the triple point is of a corresponding
{small} magnitude.

3. MUTATION

A mutation path is characterized by a parameter that defines the inter-
molecular potential. This contrasts with the familiar thermodynamic
pathways, which are given as in Section 2 in terms of state parameters such
as the pressure and the temperature. Mutation paths will no doubt prove
very important in establishing the usefulness of the Gibbs-Duhem integra-
tion technique. A Gibbs-Duhem survey of the coexistence diagram for a
given model potential cannot be taken without being first given a point on
the diagram. Mutation paths present us with a very convenient means for
obtaining this datum, viz., integration from a coexistence point of another,
better-studied, model potential (e.g.. that of Lennard-Jones).

We wish to demonstrate the notion of a mutation pathway and, at the
same time, show once more how Gibbs-Duhem integration is extended to
study three phase coexistence. The path we shall traverse takes the
Lennard-Jones (LJ) into a square-well (SW) model. and it comprises two
parts, reflected by a “softness” parameter s and a “well-parameter” &,

[ IS 6
u(r;s,k)=4tz<%) —l:(l—k)4&:<%> +k£(l—H(r—/'.a)):| (4)

As the parameter s decreases toward zero from the LJ value of 1/12, the
repulsive part of the potential becomes increasingly hard. The parameter &
is zero for the LJ model. Once we reach the limit s=0, we turn the path
in a direction of increasing k, reaching the SW potential at k=1. In
Eq. (4), H(x) represents the Heaviside step function, and its application
here contributes a uniform well to the potential from the hard-sphere
diameter ¢ to a range ic; we choose 4 henceforth to be 1.5.

If we treat the potential parameters s and & as independent field
variables describing the state of a hybrid system, then changes in T, P, s,
and A must satisfy a generalized Gibbs-Duhem equation

din f=hdf+Zdlnp+A,ds+ A, dk (5)
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This formula defines A, and A, each of which may in turn be expressed
in the form of an NpT ensemble average,

. 1.5
A= —4/{& <<E> ln(a/r)>
$” r NpT
G 6
A= fe <4<—> —(1 —H(l'—).a))>
r NpT

Thus they may be readily computed in a moiecular simulation. We proceed
as before to derive Clapeyron formulas that characterize the saturation
lines along s and &k,

(6)

Clnp _ HYAR+ H™A, + H® 4,
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where 1 is either s or &, and other quantities are as defined in the previous
section.

The only difficulty encountered in the integration series occurs as
the hard-core limit is approached. i.e., s — 0. In this case, A, becomes
increasingly difficult to evaluate by simulation averaging according to
Eq. (6). Fortunately, we can develop an alternate expression for A, in this
limit by expanding the pair distribution function about the contact value
(r=0). We may [urther transform the result by applying the pressure equa-
tion, which gives the pressure in terms of the radial distribution function
[18]: finally, we have

Ay=3[Z =1+ 4Be(a/r)*>1[7 + In(4p)] (8)

where ; is Euler’s constant. To evaluate the compressibility factor Z, we
used the predictor/corrector pressure and temperature and the simulation
average of the density.

We performed a Gibbs-Duhem integration series along the triple-
line path connecting the LJ and SW modeis. The pressure integration
proceeded almost as prescribed by Eq. (7), the difference being that we
applied a formulation with the pressure p itsell as a dependent variable,
rather than In(p). Most details of the integration procedure follow as in the
previous section. Beginning with s =1/12 and k=0, a step in s was taken
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to s=0.08, and subsequently steps of 0.01 were taken to s =0.01. The final
step to s=0 we completed by evaluating A, according to Eq. (8). The
resulting point of coexistence was then used to begin an integration series
in k, applying steps of 0.1 to take k from zero to unity.

The simulations employed 108 particles in the solid and vapor phases
and 128 in the liquid. The usual cubic periodic boundaries were applied to
the solid and vapor, while the liquid was simulated in a periodic truncated
octahedral cell [13]. We sampled 10,000 cycles beyond relaxation phases
of 10,000 or 5000 cycles for the paths in s and &, respectively; a cycle here
comprises one attempted translation per particle and 10 attempted volume
changes (among all phases). Subsequent to the calculations reported in
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Fig. 3. Triple-point temperature (dashed lines) and pressure (solid lines)
observed as the Lennard-Jones potential is mutated into the square well in
the manner described by Eq. (4} (with z=1.5). The open circles are the s
pathway (along which & is held fixed at zero). and the filled circles describe
the & pathway (along which s is held fixed at zero). The procedure begins at
the right and traces that path indicated by the arrows. Uncertainties
propagated from the stochastic ecrrors in the simulation averages are
indicated where they are larger than the plotting symbols.
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Section 2, we applied the Gibbs-Duhem integration method to compute
the LJ triple point: [19] AT/e =0.698, pa'/e = 0.00135; this result was used
to initiate the present Gibbs-Duhem mutation series.

The saturation temperatures and pressures so computed are presented
in Fig. 3. Tt is interesting to see that the effect of changing the attractive
well is counter to that of increasing the hardness of the repulsion. The
pressure curve, in particular, almost retraces itself as s and k are varied in
turn. Much of this effect may be explained by the fact that the well depth
increases significantly as s — 0 and is restored upon the increase in k. While
the triple-point temperature also retraces itself to some extent, it has
nevertheless been cut almost in half by the process, settling to a value of
about 0.41 for this (/= 1.5) square-well model. The triple-point pressure
varies over a rather wide scale during this process, and we feel that more
accurate results may have been obtained by applying Eq. (7) as written
[ie. in terms of In(p)]: this calculation is currently under way. Also, the
final step taken to s =0 seems slightly out of line with the trend to s=0.01,
and we are more carefully examining our application of Eq. (8) to see if it
has introduced additional uncertainty at this point. Pending completion of
these verifications we will withold a final proclamation of our measurement
of the /= 1.5 square-well triple point.
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